Road Map - Data Science

 

๐ŸŽฏ Ultimate Data Science Roadmap (2025)

From Beginner to Advanced – Tools, IDEs & Applications


๐ŸŸข Stage 1: Foundation (Beginner Level)

Focus: Core Concepts, Basic Tools, and Initial Programming Skills

๐Ÿ“˜ Topics to Learn:

  • What is Data Science? Roles & Applications

  • Basics of Programming (Python or R)

  • Statistics & Probability Fundamentals

  • Linear Algebra & Matrices

  • Data Types and Structures

  • Git and Version Control

  • Introduction to Data Manipulation using Pandas/Numpy

  • Data Visualization Basics (Matplotlib, Seaborn)

๐Ÿงฐ Tools/IDEs:

  • IDEs: Jupyter Notebook, VS Code, Google Colab

  • Languages: Python, R (Choose one)

  • Version Control: Git + GitHub

  • Resources: Kaggle Datasets, Google Colab, Medium Blogs

๐Ÿงช Mini Projects:

  • Exploratory Data Analysis (EDA) on Titanic Dataset

  • COVID-19 Visualization Dashboard


๐ŸŸก Stage 2: Core Skills (Intermediate Level)

Focus: Data Processing, Machine Learning, and Real Projects

๐Ÿ“˜ Topics to Learn:

  • Data Cleaning & Wrangling

  • Advanced Data Visualization (Plotly, Dash, Tableau)

  • SQL for Data Science (Joins, Subqueries, Window Functions)

  • Feature Engineering

  • Introduction to Machine Learning:

    • Supervised Learning (Regression, Classification)

    • Unsupervised Learning (Clustering, PCA)

  • Model Evaluation & Tuning (Cross-Validation, Grid Search)

  • Introduction to APIs and Web Scraping (BeautifulSoup, Requests)

๐Ÿงฐ Tools/IDEs:

  • IDEs: Jupyter, PyCharm, Google Colab

  • Libraries: Scikit-learn, XGBoost, LightGBM

  • Database: MySQL, PostgreSQL

  • Visualization: Power BI, Tableau

๐Ÿงช Mini Projects:

  • House Price Prediction (Regression)

  • Customer Segmentation (Clustering)

  • Sales Dashboard (Power BI / Tableau)


๐ŸŸ  Stage 3: Advanced Data Science

Focus: Deep Learning, Big Data, Deployment

๐Ÿ“˜ Topics to Learn:

  • Deep Learning Fundamentals

    • Neural Networks (ANN, CNN, RNN)

    • Frameworks: TensorFlow, Keras, PyTorch

  • Natural Language Processing (NLP):

    • Text Classification, Sentiment Analysis, Transformers (BERT)

  • Time Series Forecasting

  • Big Data Tools:

    • Hadoop, Spark, Hive

  • Model Deployment:

    • Flask/Django for API

    • Streamlit, FastAPI, Gradio

  • MLOps Basics (CI/CD, Docker, MLflow)

๐Ÿงฐ Tools/IDEs:

  • Deep Learning: TensorFlow, PyTorch, Keras

  • Big Data: Apache Spark, Databricks

  • Deployment: Docker, Flask, FastAPI, Streamlit

  • Cloud: AWS, GCP, Azure (S3, EC2, Vertex AI, SageMaker)

  • Experiment Tracking: MLflow, Weights & Biases

๐Ÿงช Mini Projects:

  • Image Classification with CNN (Cats vs Dogs)

  • Sentiment Analysis using BERT

  • Stock Price Forecasting (LSTM)

  • End-to-End ML App with Streamlit + Flask API


๐Ÿ”ต Stage 4: Specialization & Real-world Applications

Focus: Domain Knowledge, Capstone Projects, and Portfolio Building

๐Ÿ“˜ Specializations:

  • Computer Vision

  • NLP & Generative AI

  • Time Series Forecasting

  • Reinforcement Learning

  • Bioinformatics / Health Data

  • Finance & Risk Modeling

๐ŸŒ Applications:

  • Fraud Detection Systems

  • Chatbots & Virtual Assistants

  • Recommender Systems (e.g., Netflix, Amazon)

  • Image Recognition (Self-driving cars, OCR)

  • AI for Healthcare (Diagnosis prediction)

  • Customer Churn Prediction

๐Ÿงฐ Tools:

  • AutoML: Google AutoML, H2O.ai, DataRobot

  • AI Tools: OpenAI APIs, HuggingFace Transformers

  • Project Hosting: GitHub, HuggingFace Spaces, Streamlit Cloud


๐Ÿ“ Suggested Learning Path (Timeline)

DurationFocus
Month 1-2Python, Math, Stats, Git
Month 3-4EDA, Pandas, SQL, Visualization
Month 5-6ML Algorithms, Model Tuning
Month 7-8Deep Learning, NLP, Time Series
Month 9-10Big Data, Deployment, Cloud
Month 11-12Capstone Projects, Portfolio

๐Ÿ“š Recommended Resources

Courses:

  • Free: Google Data Analytics (Coursera), Kaggle Courses

  • Paid: Data Science Specialization by Johns Hopkins (Coursera), MITx MicroMasters (edX)

Books:

  • “Python for Data Analysis” – Wes McKinney

  • “Hands-On ML with Scikit-Learn & TensorFlow” – Aurรฉlien Gรฉron

  • “Deep Learning” – Ian Goodfellow


๐Ÿ’ผ Portfolio & Resume Boosters

  • Build 3-5 major projects (end-to-end)

  • Upload on GitHub with ReadMe

  • Create a LinkedIn profile with regular posts

  • Contribute to Kaggle Competitions

  • Deploy ML Apps on Streamlit or HuggingFace

Comments

Popular posts from this blog

Career Guide - B.Tech Students

How to Get a Job in Top IT MNCs (TCS, Infosys, Wipro, Google, etc.) – Step-by-Step Guide for B.Tech Final Year Students

Common HR Interview Questions